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1 Introduction to Computational Optics

Application of Computational Optics

e propagation of light in glass fibers
e thin film solar cell simulation

laser simulation

optical lithography

laser matter interaction

Simulation Methods in Computational Optics

e Finite Difference Time Domain Method
e Beam Propagation Method

e Rate Equation

e Finite Element Method

o ..

Application to

e wave propagation in solar cell simulation
e simulation of lasers (solid state lasers)

o ..

Diode Pumped Solid-State Lasers
Let us describe the basic concept of a diode pumped solid-state laser.
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e A pumping light (diode light) pumps energy in a laser crystal.
This means that electrons are pumped from a lower energy level to a

higher energy level.

e A light (laser light) is gained inside of the crystal.

The pumping light heats the laser crystal. This leads to a thermal lensing

effect inside the laser resonator.



The simulation program ASLD is a program for simulating diode pumped
solid state lasers:
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Our aim is to perform 3-dimensional simulations of optical waves in lasers:

Siﬁililation of Thin Film Solar Cells
Thin film solar cells are a new generation of solar cells.

e The thickness of these cells is only a few micrometers.

e The manufacturing cost are very low.

e But: The efficiency of thin film solar cells is much lower than the effi-
ciency of standard solar cells.



Research institutes working on thin film solar cells:
e National Renewable Energy Laboratory (NREL, Golden Colorado)
e Institute of Energy Research (Jiilich, Germany)

Light in a Thin Film Solar Cell

To optimize the efficiency of thin film solar cells it is necessary to simulate
the optical properties of these cells. To this end, it is necessary to solve
Maxwell’s equations for plane waves which incident the top the cells:

Incident angle of optical wave: 60°

wavelength A\ = 505nm:

wavelength A = 700nm:



Only a certain fraction of the light is absorbed in the silicon part of a
solar cell. The rest of the light is reflected. The following picture shows the
optical efficiency of a thin film solar cell calculated by the FDTD method.
The efficiency depends on the wavelength of the incident wave.

‘ "efficiehcy.dat" ‘

total optical efficiency = optical efficiency * power of sun



2 Basic Physical Equations

2.1 Maxwell’s Equations and Helmholtz’s Equation

The physical variables of Maxwell’s equations are the 3D-vectors (see [?]):

= electric field intensity (volts / meter)
electric field density (coulombs / meter?)
magnetic field intensity (amperes / meter)

magnetic field density (webers / meter?)

o, o =
|

= electric current density (amperes / meter?)
the scalar value
p = electric charge density (coulombs / meter?)
and the material parameter
€ = permittivity (farads/meter)

= permeability (henry/meter)

T Faraday’s law

<1 4
X X

— Wy Maxwell-Ampere law
Gauss’s law
= 0 Gauss’s law - magnetic

SIRURS

< o Oty
I
>

= % equation of continuity

and constitutive relations:

D=¢E, B=uH, J=0E
In computational optics common assumptions are
e /i is constant,
e p=0, and

o J=cF ,
where o is the electrical conductivity (siemens / meter).



By these assumptions, we get

o oH
T
VxH = e%—‘f—i—aE,
V. (eE) = 0,
V-H = 0.

Example 1 (E-polarization plane wave:). Assume that € and p are constant
and that o = 0. Let w be a given frequency. Then,

E(t7 (l’, Y, Z)) = exp(i(wt - ky)) Ey (07 07 1)7
H(t,(z,y,2)) = exp(i(wt—ky))Ho (1,0,0),
where

k= £\ HEW, HQ = _EO = —E[)

15 a solution of Mazwell’s equations.
This plane wave is called E-polarization plane wave in the (x,y)-plane.

Since p is constant, we get from Maxwell’s equations:

8 il
= H
uth

o 0E -
= _NE <€E+0E>

E OF
- M TR

VxVxE =

Thus, we get the vector Helmholtz equation:

0’E OE

VXVXE:—MEW—MUE.

Let us assume the € is constant. (But, often € is not constant!) Then, we
get
eV -E=V-D=p=0.



This implies
V(V-E)=0. (1)

Then, we get . . . .
VxVxE=V(V-E)—AE=-AFE

Now, the vector-Helmholtz equation

- 0’E OF
E=—pue—— — po—.
V x 'V x € BTE Ho 5
and the assumption (1) imply
o ’E OF
—AE = —pe—— — po—.
R Y

Let us consider one component e, E(x,y, z) of this equation. Then, we get
the scalar Helmholtz equation:

O’E  OE
—AE = —HE Gy T MO (2)

Example 2 (Plane wave). Assume that € and p are constant and o = 0.
Let w be a given frequency. Then,

E(t, (2z,y,2)) = exp(i(wt —ky)) Eo

where
k= \/pew,

15 a solution of the scalar Helmholtz equation.

2.2 Refraction Indices
In vacuum, it is

€ = ¢ =8.854-10""farads/meter,
po= o = 4w - 10" henrys/meter,

/1
c = —_—,
€olbo

10



where c is the velocity of light.

w

By Example 2, we see that in vacuum k£ = £ and that A =

wavelength in vacuum. Thus, the wavelength in vacuum is

2
A= 0
w
In a general material let us define
& = efe,
fe =t/ o

In computational optics u, = 1.
The complex refraction index

ncg =nNr — in]
is defined such that the wave
E =E, cos(w(t—ngy/c)) e “mv/e

2

k

is the

(3)

is a wave traveling through a material with complex refraction index nge =

ng — iny (see Hecht page 198).
This definition is based on two experiments.

Experiment 1 (Absorption). Send a wave with frequency w through a ma-
terial with thickness d. Let A be the measured damping of |E| while the wave

travels through the material. Then, define ny by:

A = e—UJTLId/C'

Experiment 2 (Local Wavelength). Send a wave with frequency w through
a material. Let Ao be the measured wavelength inside the material. Then,

define ngr by:
WNRAoc/C = 2.
Formula 1.

6 — nh—nl

€g NRNy
o = 4m,/— ,
to A

where X is the wavelength in vacuum.

11



Proof. Let us insert the ansatz (3) in the wave equation (2). This means

E =E, cos(w(t—ngy/c)) e “rv/e

in
0’E ok
AFE = ppe—= + —_—.
Ho€ BIE Moo It
Comparing the cosines terms, we get
2 2
n n
——wa + w2—21 = —OJQ,uoE.
c

c
. . L . . .
Using ¢ := ,/ e this implies

Comparing the sinus terms, we get

€ =Ny —ny.

nrg Ny

—2W—w— = —Wyo.
c c
Using the equation
27c
w=——
A
this implies
4T ngng €0 MRNJ
Cto A T

2.3 Time Periodic Solutions
Let us assume that F is time periodic. This means:
E(z,y,z,t) = exp(iwt)E(z,y, 2).

Inserting in the scalar Helmholtz equation, leads to

—AFE — F*E =0,

where k? = pew?.
This is the Helmholtz equation for time periodic solutions.

12



3 Solving Maxwell’s Equations

3.1 Finite Difference Time Domain Discretization (FDTD)

Lets first define a staggered grid on the 1-dimensional interval [0, L], and let
0=1x9 < x1,...,x5y = L be a finite sequence of grid points. Now, lets denote

Q. :=A{xo, 1, ..., TN}
to be the set of corner points. The staggered grid or dual grid corresponding
to €2, is

QS = {SQ, S1yeeny SN—l}
where

1
Si:§(xi+xi+1) fOI'iZO,...,N—]_.

Example 3 (Uniform Staggered Grid in 1D). Let z; = i * %, 1 =0,...,N

be the uniform grid of mesh size h = % Then, the corresponding staggered
grid is s; = (i —0.5) x £, i=1,..,N (see Figure 1).
Zo I N
€, O
S0 S1 SN—1

Figure 1: Staggered grid in 1D.

For the definition of a staggered grid in three dimensions, lets restrict
ourselves to the rectangular domain

QO =[0,L,] x [0, L] x [0, L.

Furthermore, lets assume that the 1-dimensional intervals [0, L,|, [0, L,],
and [0, L,] are discretized by the 1-dimensional grids

Qgcc = {-I'Oaxl? "'7',’L.N:1;}7 Qg = {yanlv "'>yNy}7 and
QF :={z0,21,..., 2N. }

Then, 8 types of grids exist in 2, which can be composed of these 1-dimensional
grids. These grids are

— O Yy z
Qtzytwtz - Qtw X Qty X Qtz7

where (t,,t,,t,) € {c, s}>.

13



Example 4.

o Qs Qese, and Qye., are the staggered grids located at the edges of a
discretization cell.

o Oiss, Qses, and g, are the staggered grids located at the faces of a
discretization cell.

See Figure 2.

The grids €2, ;, ;. are grids on a simple rectangular domain Q = [0, L,] x
0, L] x [0,L,]. Obviously a generalization to other rectangular domain is
a simple task. However, a generalization to curvilinear domains or block-
structured grids requires certain modifications. Handling curvilinear domains
correctly, is mainly a discretizations problem and not a data structure prob-
lem. By introducing coordinate functions X,Y,Z one can implement every
discretization on structured grids and curvilinear domains. However, block-
structured grids might lead to complications, if the composition of the blocks
changes the x-,y-,z-orientation of the blocks. In this case, one should intro-
duce a grid on edges and a grid on faces. Furthermore, we recommend edge
elements as a discretization on such grids. This will increase the complexity
and the storage requirement of these discretizations. Therefore, let us restrict
ourselves to rectangular domains.

Let us consider Maxwell’s equations in 3D in the following form:

88 — VXH—O‘E,
oH —VXE—U*E,
= 0,

V-H = 0.

q

-

Bl
[l

The Yee algorithms discretize E and H on the staggered grids. For rea-
sons of simplicity, lets restrict ourselves to a uniform staggered grids:

. . . L _ L _ L
Dttt in space with mesh sizes h, = ¥ hy = N_Z’ h, = ¥ and

QF in time with time step 7.
The fields E and H are discretized at the faces and edges of the mesh cells

Ex|§;> p € chs> Ey|§;7 p € Qscs> Ez|§)a b € stca Vt € Q:gr?

14



Z y ,
Ho . b
X o , H y
N I X
 H
Y =
HZ ! I_|z o Ey
____________ 1
E !
X 1
I H
1 X
(i,.K) H

Figure 2: Staggered grid in 3D.
Hz|§)7 p E QSCC? Hy|§;, p e QCSC7 HZ|ZJ p E QCCS) Vt E Qz

The finite difference time domain method (FDTD) discretizes the first
component of Maxwell’s equations as follows:

t+Z t—Z
El? —Ely® _ 1(Hly-Hly  Hl -
h, h.

t+1 t—T
~o(pEaly? + (1= p) Bl )

VM € Q, ¢ € S0,

T €

where
w M + e, E = M-etle,
N = M+ele, S = M-—e,
T = M—i—ezg—z, D = M—ezh—;.
and p € [0, 1].
This leads to the update formula
t+3 -3, T (H:fy — Hls Hylr — Hylp
Ez 2 Ea: 2 o -
‘M ( |M + € ( hy hz
t—T 1
~o(1= Bl )) e

15



VM € Qegs, ¢ € S0,

The other Maxwell’s equations are discretized analogously.
In case of o = 0, one obtains the update formula

oz -z 7 (H|% — H.%  Hl.—H,,
E |2 =E,| 2+~ _
[ar [as € ( h, h.

(4)

VM € Q. t € QL.

The other Maxwell’s equations are discretized analogously.

3.2 Stability of FDTD

The Finite Difference Time Domain Method (FDTD) is an explicit method
for the discretization of Maxwell’s equations. Therefore, the time step has
to be small enough and the coefficients have to satisfy certain conditions to
obtain convergence.

Stability of Time Stepping

Definition 1. The finite difference time domain method is stable if the so-
lution is bounded for any initial condition and periodic boundary conditions.

Theorem 1 (CFL-Condition). Assume that o >0 and € > 0. Let

The finite difference time domain method is stable if
&< 1.

Let us prove this Theorem.
Let us consider the FDTD discretization in the short form for J, . = 0

anth,T:Oanduzlandezlz

(ff[hﬁ = -V, x E}M at time points n + %,
8iﬁh77 = V, x FIh,T at time points n.

Now, the abbreviation
Vh,T = Hh,T + th,T

16



leads to

OV = Vi % Vs
Observe, that Vhﬁ is a vector defined at all edges and faces of each cell and
which is defined at all time points t%n, where n € N. To this end set H}, ; and
Eﬁw to be zero at all points, where these vectors originally are not defined.

Now, we obtain the following lemma.

Lemma 1. The FDTD method is stable, if the solution ﬁhﬁ, EﬁhyT 18 bounded
fort — oo.

Let us analyze
Vs = jVi X Vi
By Fourier analysis, we see that it is enough to analyze the behavior of the
solutions with periodic initial condition:
VhyT(O, x,Y,z) = Vel (har—hyy—h:z) (5)
The FDTD method is stable, if V, , has the form
Vh,T(t, .y, z) _ ‘_/'Oej(wtsz:pfkyyszz)

for every edge point, face point, and every time step t%n. Observe, that a
Fourier decomposition with periodic functions as in the ansatz (5) spans the
whole space of possible initial conditions, since every unknown of the vectors
H hr and E;hﬁ is located at a different spatial point.

The abbreviation Vj = (Ve, Vi, Vo) T leads to

1
ez Oy o Vi
jthVhﬂ. = det €y a’ty,y V;J ej(wt—kmx—kyy—kzz)
g
e: O, Vi
1 kzh
€y ESln( i)V,
: | - rkyh L
= jdet | ey hism( L)V, o (Wi—kpz—kyy—kz2) _
Y
U oo (kshs
€. ESID( 5 ) ‘/2
Ve
OVir = OF |V, | eWherhuhs
V.
1 wT Va .
= —sin(—) | V, oJ (Wt—kea—kyy—k-z)
T 2 v
z

17



This is a linear equation system with unknowns V,, V,, and V.
The equation system has a unique solution if and only if

() L) ()
0 = det iSID(%) ] 3111(% _% sm(%)
_% sin(%) —l—hlz sm(kgh ) j% sin(4)

(L) (o) ()

. This is equivalent to the stability equation:

(iomm320) + (i omt5) + (ioom'5) = (o)

The stability equation has a solution w for every k;, k,, k., if

1 1 1
ﬁ+ﬁ+ﬁ<1

A renormalization of this stability condition shows

/1 1 1)@
T<cC h2+ﬁ+h2 .

where c is the velocity of the wave.
Stability of Absorption Term
Let us recall the update formula:

t+1 t—Z
Elg? —Ely® _ 1 (Hly -y Hl - 1
T € hy h.
t+Z t—Z
—o(pEulyy® + (1= p)Ealy?))
Then, one obtains the following discretizations

o p = 0: explicit discretization

18



e p = 1: implicit discretization

To analyze the stability, of this discretizations, we consider the case that

_ HZ|§V — Hz|f">‘ _ Hy|?r — Hy|tD

0 h, h.

Then, one obtains the following update formula:

T o 1— To(1—p)
Euly® = Eily® W
Stability is obtained if
1 To(l—p)
< 1.
1t | =

This implies:
o p=0: stability if |Z2| < 1.

e p = 1: stability if sign(oe) = 1.

Difficulty: sign(ce) = —1. This happens in case of materials with negative
permittivity index.

Definition 2. A material has negative permittivity index if €, < 0.
Example 5 (Silver). The refraction indices of silver (Ag) at wavelength \ =
500nm are: ng = 0.13 and n; = 2.9637.  This implies

€ = np—nj=—8.78796929.

Figure 3 depicts the refraction indices of silver (Ag). These data imply
that silver has a negative permittivity for A > 325nm. In Section 3.7, we
describe a stable discretization for time periodic solutions.

19
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3.3 Implementation of the FDTD Method

0

To implement algorithms on staggered grids let us define a class variable

which represents a vector (vp)peq,, ., .. :

enum stag_typ { not_stag, stag };

template <stag_typ tx,stag_typ ty,stag_typ tz>
class Variable {
Variable(double L,int N_points);

};

Here L is the size of the computational domain © = [0, L]* and N_points is
the number of grid cells in x-, y-, and z-direction.

Furthermore, let us assume that we can implement shift operators N, S,

which evaluate a vector at its corresponding shifted indices. Then, a
natural implementation of the update formula 4 is

double tau, epsilon, hy, hz;
double L = 2.0;

20



int Np = 200;
Variable<not_stag,stag,stag> Ex(L,Np);

Variable<not_stag,not_stag,stag> Hz(L,Np);
Variable<not_stag,stag,not_stag> Hy(L,Np);

E).c.= Ex + tau / epsilon
( ( N(Hz) - S(Hz) ) / hy -
( T(Hy) - D(Hy) ) / hz );

By expression templates, one can implement the above update formula
in an efficient way.
By the template parameter, one can forbid mathematically incorrect ex-
pressions like
Ex = Ex + (T(Hz) — D(Hz)); (6)

This expressions is mathematically incorrect, since data of the vector Ex
is located on the grid 2., and the data of T(Hz) is located on the grid
Qccc. Therefore, no arithmetic operations can be performed for Equation
(6). However,

Ex = Ex + (N(Hz) — S(Hz)); (7)

is a correct expression with staggered grid data.

3.4 Simple Boundary Condition

There exist three simple boundary conditions:
e periodic boundary conditions
e strict incoming boundary condition
e reflection boundary condition

Periodic Boundary Condition Let I'g and 'y be the east and west bound-
ary face of the computational domain. The periodic boundary condition is:

E|FE = E|FW
H|FE = H|FW.

21



Reflection Boundary Condition Let I'yegeet be part of the boundary. Re-
flection at I'egeet can be modled by

=0.

Creflect

Strict Incoming Boundary Condition Let

e [' be a flat part of the boundary,
e 77 the inner normal vector, and
e i, and #, two orthonormal vectors orthogonal to 7.

Setting

Et,7) = exp(i(wt—kiioZ))Ey t,,

H(t,¥) = exp(i(wt—kiioZ))Hyt

at I', where Hy = ”%Eo,
leads to an incoming wave condition.

Since all data are located at a staggered grid often only one of the above
equations is needed at the boundary I'.

3.5 PML Boundary Condition

It is difficult to define a boundary condition without reflections. These are
not Neumann boundary conditions!

Let assume that a plane wave (Hz, Ey) travels in x-direction (see Figure
4).

The wave is absorbed without reflections, if one chooses o* = o0& > 0.

Absorbing boundary conditions have to be implemented by an extension
of the computational domain (see Figure 5). This extension domain is called
PML (Perfect Matched Boundary Layer).

In this domain the wave has to be absorbed without reflections. The size
of the domain should be roughly 2 wavelength.

However, just choosing 0* = o£ in the extended domain leads to reflection
for oblique incident waves at the absorbing boundary. Therefore, one has to
split the fields H and E.

22



traveling wave

")
c*=0c=0__ - g =0
————————— = .
absorbing
————————— =
————————— > .
lossless _ region
————————— =

Figure 4: Plane Wave Incident Upon a Lossy Half-Space.

periodic boudary condition

———————————

extended

,,,,,,,,,,, domain

———————————

periodic boudary condition

Figure 5: Extension of the Computational Domain.

To explain this, consider the update formula

T (Help — Help B H. |y — H.|iy

t—I—I t—ZI
Ey|M2 = Ey|M2 +

This formula can be split as follows

T . th szt_th_Hth
ny|§;[r2 = Ey:vr;\/[2 +Z ( ol t ’Th o ’D>
€ 2
z -5 Hzrt Hzt_Hzxt _Hzt
o ( e el y|W)
Ey, = Eyp+Ey
H, = H:L’y + H,.
Hz = Hz:v +sz
The general update formula
z 7 (HyL — H,l H,|t. — H,|
Ey|j\}’2 — (Ey|§\42 4 ( |Th ’D o ’Eh ‘W
01— p)B,7))
PIZvla ) ) e

23



is split as follows:

t+% t—3 1
Eyz Moo= ( —O'Z(l —p) (Ey2|M )) ’]__’_—O'Zi

-1 1

t+75
Eyly® = ( —0x(1—p) <Eyz,M >) 1 4 2L

Inside the physical domain choose o, = 0y = 0, = 0.
In a PML region orthogonal to the x-direction, choose o = 7,2 > 0.
In the PML region in Figure 5 choose o} = 0,2 > 0.
o, can be chosen constant or quadratic inceasing in the PML region.

3.6 Incoming Boundary Condition with PML

Consider an incoming wave (Ey, Hz) traveling in x-direction.  To avoid
reflections at the incoming boundary, we have to split the field in a scattered-

wave field and a incoming-wave field.

Etotal — Einc + Escat
)
]__I'total — ﬁinc + ﬁscat
T eML total field:
incoming wave "~ only ”””” scat field PML
.- scat - ﬁel d incoming field

However, we store only one field as follows:
e PML-region: store only scattered-wave field.

e physical domain: store only total field.

e interface-region: store only total field. = The interface-region is the
interior boundary between the PML-region and the physical domain.

The incoming wave has to be defined at this region.

Let us define three kind of subdomains of the computational domain:

e [';,: incoming boundary; interface between physical donain and PML.

Assume that we store the field component E, at this interface.

24



o [',..+: next layer of grid points in the PML region parallel to I';,.

o (... all other grid points.
Apply this formula at all points €,..:

© (Holy — Holy  Hilp— Holy
€ hz h:r

t+Z t—ZI
Ey‘MZ = Ey‘M2 +

Let us assume a (Ey, Hz) incoming wave traveling in x-direction.
Apply this formula at all points I';,:
r (HwT — Haly  HJy — (H.liy + HA%"C))

t+Z t—Z
Ey’M2 = Ey’M2 +

€ h, hy

Apply this formula at all points I',c.:

b =i 7 (Bule = (Bl = BJ)  Buly = Bl
oM M e B h,,

3.7 Calculation of Time Periodic Solutions

To describe the formulation, we assume the media is linear and isotropic.
The finite difference frequency domain method is a discretization of Maxwell’s

equations for a time periodic source:

~ 1 ~ ~
iwbE = “vxHiH-2E,
€ €
~ 1 ~ *
iwH = —~vxbE-LH,
7 [

(8)

where we consider a source defined at the boundary of simulation domain.
Here, let us restrict ourselves to the domain 2 = [0, L,] x [0, L, x [0, L.].

For reason of simplicity, we consider periodic boundary conditions in x- and y-

direction, an incoming plane wave at the top face I'y,, = [0, L] x [0, L] x{L,}

described by

> Cq>am>

<

p
(r) = K,



where Hy = \/EEO, D € Liop.

To find a stable discretization of equation (8) with a suitable iterative
solver, a common method is to a apply the FDTD method and to use the
time stepping as an iterative solver. Let us describe this approach in detail.

The time dependent Maxwell’s equations that describes electromagnetic
wave propagation in a linear, lossy media are

oE 1 N

—_— == H—-—F

ot EVX € (9)
oH 1 e
—_— = E— —H. 10
5 MVX . (10)

Since we consider a time periodic source term with frequency w, the solution
of (8) and the solution of (9), (10) are related by:

E(t) = Ee“,

H(t) = He“".
The finite difference time domain method (FDTD) discretizes Maxwell’s
equations in space and time. The spatial domain is descretized on a uniform

staggered grid with meshsizes h = (hy, hy, h,). Then, Maxwell’s equations is
approximated by the finite difference equations

Ertl — En 1 . n 4
h h _vh % Hh+1/2 . gE]zlJrl + SEezwm‘7 (11>
€ €

-
o2 _ gnei/e 1 . o L '
h h = Vi x Er— ZH™MP L sy (12)
T M H
where 7 is the discrete time step, E}? and ﬁgJFl/ % are electric and magnetic

field vectors approximated at time points n7 and (n + 1/2)7 for n =0, 1, ....
Furthermore, Sy and Sg are discrete source terms obtained by the boundary
conditions.

Now, let us assume for the discretized equations (11) and (12), that there
exist initial start vectors E,? and ﬁg such that E,’j and F[}; are periodic
solutions in the following sense

E;L'L — Ehezwn’r’

ﬁ;;wrl/? _ [:[heiw(n-i-l/Q)T‘
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Then, E), and H, satisfy the equations

WT 1 .
e Eh _ _Vh « H esz/Z ZwTEh + SE, (13)
T €
ein/Q _ e—in/2 R . .
Hh = __vh X Eh — —HheWT/Q + SH (14)
T f [

This is a finite difference frequency domain (FDFD) discretization of (8).

Now, let T tend to zero in this system of equations. Then, considering

that lim, o “—% = jw, we obtain E;” o = lim,_, Eh( ) and ]:I;WZO =

lim, o H n(T ) are the solution of

~ 1 ~ ~
Wk —o = ;Vh X Hp - — %Ehﬂ'zo + 5, (15)

N 1 o * .
wllirg = = Vi x Biomo = %Hh,mo. (16)

This implies that the finite difference solution Eh,]:I n is an approximation of
E , H for positive and negative permittivity.

The difficulty is to find an iterative solver that calculates E), and Hy,. In
case of € > 0, the finite difference time domain iteration method (11), (12)
can be applied as an iterative solver by adding time periodic factor (using
the transformation):

En —jwnT . Evn

= 4

n+1/2 —iw(n+1/2)r . fn
a2 —. A

This leads to the iteration algorithm

iwT fm+1 rn
e“TEYT — By

7_
_ _v Hn+1/2 iwr/2 uuTEnJrl + SE; (17)
€
€WT/2H}?+1/2 _ B_MT/QH;: 1/2
T
1 P
= S Vax B - %Hh“/zem/2 + Sy, (18)
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The explicit version of this iteration algorithm is:

Eptt

- (EV" x [ATTV2eir/2 4 G E;;) /(1 + %)e‘iw, (19)
2

h

TO*

= (—th x Ej + 7Sy + e—iwﬂﬁ;;—l/?) J(1+—)e ™72 (20)
il

However, in case of € < 0, this iteration method does not converge.

3.8 Stable Iteration Method for Negative Permittivity

Our aim is to modify the time iteration scheme (19) and (20) to obtain a
convergent iterative solver independent of the sign of €. To this end, we keep
(19) and (20) at all grid points with positive € > 0 permittivity. However,
we modify the discretization (13) and (14) and the iterative solver at all grid
points with negative permittivity e < 0. To obatin convergence, we only have
to modify equation (17) as follows:

iwT I 1
By — Ly _ lvh « FrL2giwr/2 _ 9 ot + 5,
T € h e n

The explicit version of this iteration algorithm is:

1

41
By I
€

T Arnt1/2 A i
(__vh > H}’r;—i- / 61w7/2 - TSE . E;Lzezum-)
€

The total iterative solver can be written as

Showing convergence of this iterative method independent of the sign of
and independent of the meshsize h requires a detailed analysis.

Here, let es assume that (21) converges. Then, there is a fixed point E,
and H » of the iterative solver (21). Thus, E’h and H, n satisfy the equations
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. 1 P
Eh = —Vh X Hhesz/Q
€

o, (L=e®)(1 +sign(e))

€ 2
_ p—iwT/2 1 R
¢ Hh = ——Vh X Eh

1

)E +SE,

62’w7’/2

T

— O-_[f[heiwfﬂ + SH
M

This shows that the finite difference solution Ej, Hj, is an approximation of
E, H.

4 Beam Propagation

4.1 Paraxial Approximation

The paraxial approximation is an approximation of the scalar Helmholtz
equation.

(A +K)E(2,y,2) = 0.
Let ko be an average value of k. Inserting the ansatz
E = e ™0 (z,y, 2)

in the scalar Helmholtz equation leads to

v
— AV + 22’/{0%— + (kg — K*)¥ = 0.
z

In the paraxial approximation, we neglect the term it ‘I’. This leads to:
PV 9P v

27,]{?08

022 dy 02 0z

In the case that k = kg is constant, we obtain

+ (k2 — k)T =0.

0?v  0?0 ov
= 2k =0,
- 0r? COy? - 2ik 0z 0
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4.2 Beam Propagation Method BPM

Let us write the paraxial approximation as follows:

ovr PV 9*U
Yikp— = —— + —— — (k2 — k)W,

Let 2 = Dx]0, L[, then one can apply
e FE or FD in z, y-direction
e Crank-Nicolson in z-direction.

Let U!(z, y) be the approximation of ¥(z,y, 71), where 7 is the time step.
Then, V!(z,y) is defined by the equations:

\IIH_I _ \Ifl 1 62\Ifl+1 (92\Ifl+1
2ikg—— = = — (kg — K*) 0!
1o T 2 ( ox? + 0y? (ko ) *
0?0 0*!
— (kg — K*)V!
o2 + 3y2 ( 0 ) )
Uz, y) = Wity 4) (initial condition)

e Additional boundary conditions are needed.

e Lenses and mirrors can be discretized by a phase shift.

-1
+1 _ T 1 82‘ 82‘ 2 1.2y,
P (E 2ik02(ax2+ay2+(k0 k) -+

l T 1 /00 52U l
(\D +2ik05( 5+ e + (k2 — KW :

5 Basic Properties of a Laser

5.1 Elements of a Laser

A laser consists mainly of the following three elements (see Figure 6) :
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. Laser medium: collection of atoms, molecules, ions or a semiconductor
crystal:

e gas laser

solid state lasers

e semiconductor lasers

e fiber laser

. Pumping process to excite the atoms (molecules) into higher quantum
mechanical energy levels.

. Suitable optical feedback elements
e as a laser amplifier (one pass of the beam)

e as a laser oscillator (bounce back and forth of the laser beam)

atoms (laser medium)

/ mirror 2
e
a R S Eer
eam
R = 80%

1

Pumping process

Figure 6: Basic Properties of a Laser

. Population inversion (see Figure 7)

. Amplification of light (electromagnetic radiation) within a certain nar-
row band of frequencies. The amplification depends on the population
inversion.

. Oscillation: There must be more gain than loss of the beam. Reasons
of loss are:
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e loss by medium
e not accurate construction of the mirrors

e output
4. Eigenmodes of a laser (e.g. Gauss modes , see Figure 8 ).

e deformation of the crystal
e gain, lenses

e different refraction index

energy

-~ upper level

i laser “population inversion
action .’

4

4

1~ lower level

population

Figure 7: Population inversion

5.2 Atomic Energy Levels, Spontaneous Emission and
Stimulated Transition

Light of a certain wavelength is emitted if a transition between two energy
levels Fy — E, takes place
“ jump of electrons “ .
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[O, 0] Gaussian [07 1] Gaussian [1, 1] Gaussian

o R

R
A

T
2,

Formula 2. The frequency of the emitted light is

Ey — Ey

= 21)

Wo1 =
where

h
h = o0 h=6.626 - 107**Js  Planck’s constant.
™
Notation for wavelength: 1um = 10000 A

Due to this formula, the energy levels can be described by

1 - _
[ /\mcm

I where ) is the wavelength of the corresponding wave and

e by a value with unit eV.

Transition from F, — FE; takes place
only with a little additional energy:

e spontaneous emission: energy from small movements of the atoms

e stimulated emission: energy from absorption
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Let N; be the number of atoms with energy level E;.

Within a short period of time a certain percentage of atoms make a
transition to a lower level.

This can be described by the following ODE:

d Ny Ny
_ = —~ YNy = ——=
dt spon Vv T ’

where
e v is called energy-decay rate and
o T = %v is called lifetime.
The solution of this ODE is:
Ny(t) = Na(0)e

If an external radiation signal is applied to the atom, then stimulated
transitions occur: “ atom reacts like an antenna .
Let n(t) be the photon density of the radiation.
Then, there is a constant K such that (see Figure) 9

dN:
-2 = Kn(t)N:(t), (absorption)
dt stim.upward
dN-
-2 = —Kn(t)Ny(t) (stimulated emission).
dt |stim.downward
This implies:
dN, dNy
—= =K Ny(t) — N — Y21 Vo (t) = ——— .
dt ltotal n(t)( 1(t) 2(t)) 21 2(t> dt ltotal

The total rate of signal stimulated transition between two energy levels
is:
Kn(t) - (Ni(t) = Na(t)).
The energy transfer of stimulated transition by a signal is

aUu,
dt

where U, is the energy density.
The energy transfer changes the photon density of the signal by:
dn(t)
Sdt

= Kn(t)(N(t) — Na(t)) - hw,

= —K(Ny(t) — No(t)) - n(t). (22)
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energy

o I R

Kan KTLNQ

spontaneius emisssion

-
E 1 \\ ’/ N 1

stimulated transitions

population

Figure 9: Stimulated transition

e Absorption (attenuation):  Ny(t) > No(t)

e Population inversion: Ni(t) < Na(t)
— net amplification of a signal

5.3 Pumping Process and Population Inversion
Population inversion means that
Nl < N2

where N; is the number of atoms with energy level E;, such that F, >
E;. In equilibrium there is no population inversion. The reason for this is
Boltzmann’s Principle of equilibrium:

Theorem 2 (Boltzmann’s Principle). In case of equilibrium the populations
Ny and Ny depend on the temperature:

N _ (BB
- KT )

This implies
N1 - N2 = N1 (1 - €_hﬁ) .
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To obtain population inversion, a pumping process is needed, which de-
stroys the state of equilibrium. Figure 10 shows a model of three level pump-

ing process.
Let

e R,y be the pumping rate (atoms/sec),
e 7, the pumping efficiency such that R, = n,R,, and

e 7;; the decay rate from level £; to Ej;.

The following formulas describe the pumping process (without stimulated

transitions):
dNs
— = R, — N.
dt p — V214V2
dN;
—_— Ny — N
di Y214V2 — 7Y104V1

If % = 0, then we get

Ny > N; (population inversion) < 79 < 791

5.4 Example of Scalar Rate Equations

Let us consider a four level pumping process according [8].
Let us abbreviate

N
N=N,— g24V1
91
then, the scalar rate equations are

ON N + Nii(v — 1
N Nnoe— NH Ny =Y | ooy
at Tf
0
8—7; = Nnoc— % + 5.

The unknowns of these equations are

_ g2

e N: population inversion N = N, o

36
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Ey

WAN relaxation

_ population inversion
/ laser action

]

l%\ relaxation

| ground level

Figure 10: Three-level laser pumping process

e n: photon density

Parameters for Ruby are (see [8] section 2.2):

® g1, go: degeneracy factors for quantum energy levels of Ruby:

Ntot

RpO .

g(N1) =4

g(No(R1)) = 2, where R; is the green band with wavelength
6943 A

g(N2(Ry)) = 2, where Ry is the blue band with wavelength 6929 A

o: stimulated emission cross section g9y = 2.5 - 10~2%¢m?

: 1.58 - 10¥0ns/cm? is the maximal population inversion.

pumping rate atoms/sec

np: Quantum efficiency 0.7

o 74 3ms (see page 15 in [8]) for R, line.
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WAN relaxation
Es

/ | " population inversion
aser action
B E

l%\ relaxation
Ey

| ground level

Figure 11: Four-level laser pumping process

e S is a small value needed for the start up of a laser.

e 7.: decay rate of photons.

5.5 Laser Amplification and Oscillation Condition

Let us assume that the optical wave can be modeled by

E(z,t) = exp(jwt)E(z)
E(z) = exp(—jkz+ anz) = exp(—jkz)u(z)
u(z) = exp(anz2).

This implies that

E(z,t) = exp(jwt) - exp(—jkz + ap2)

Thus, a constant phase shift is obtained at wt = kz.
Since t = z/c in vacuum, we get

k::

w
C
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(By k* = pew? in Section 2.3, we obtain ¢ = \/+T€ in vacuum.)

Now, let us model the optical wave by
E(zt) = exp(jwt)B(2)
E(z) = exp(—jwz/c+ anz) = exp(—jwz/c)u(z)
u(z) = exp(apz).
An increase of the photons leads to a gain of the optical wave:

|E(2)]* = | Eof* exp(+20m2)

for the intensity of the optical wave, which is proportional to the photon
density. Let r; be the reflection coefficient at the mirrors M;,7 =1, 2.
Let L,, be the length of the amplification medium.
Let L be the length of the laser medium.
Figure 12 shows one round trip of the optical wave.
Then, the minimal amplification by one round trip is:

exp(4a, L)
and the round trip phase shift is:
exp(—2jwL/c)

Then, we get
179 exp(2ay, Ly, — j2wL/c) = 1.

am—2LM n

The energy density of the electrical field is (see [3]):

This implies
1

T

1

T

SIEP
2
Thus, by (21), we obtain
€ €
= B = ——|B? 20,
n(z) T | 2hw| ol” exp(+2a,,2)
Since z = ct, we obtain

€ 2

n(t) = e | 2 exp(+2amct).

€
= %|Eo|
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By (22), we get
K(N2 - N1> = QOémC (25)

Consequences:

2wL/c € 2wZ = only certain frequencies!

c 1 1 1
20 L) =1 = No— Ny > ———1 —| | —
T2 | exp(2a ) 2 ST n( e )
This is the threshold inversion population (density).
laser medium
1 T2

Figure 12: Round trip in laser resonator

6 Numerical Discretization of a Scalar Rate
Equation

Consider the equations (23) and (24) according section 5.4

ON N + Nyi(v—1

— = —yNnoc— * Nty = 1) + R,(Niot — N)
815 Tf

0

8—7; = Nnac—%+5
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The initial values are

To discretize the unknowns
e N: population inversion N = Ny — Nj.
e n: photon density

let us use an explicit / implicit Euler discretization with
meshsize 7.
Let

e N, be the approximation of N(7s) and
e 1 be the approximation of n(rs) .
We need a discretization which guarantees that
ne>0 and N, >0
independent of s € N. Let us assume that ng, > 0 and N, > 0 for a fixed s.

e Formula for Nyiq: The factor 1/7+~y*ns*xoxc+1/7+ R, is positive.
Therefore we apply a pure implicit method:

N1 = (Ns/T—Niopx(y=1) /T +Rp*Niot) /(1) THy*ngxoxc+1/T4+R,);

e Formula for ng,:
— If coNy — 1/7. > 0, then we apply an explicit method:
Nsr1 = Ns + 7 % (ng(coNs — 1/7,.) + 5)
— If coNy — 1/7. < 0, then we apply an implicit method:
nsy1 = (ng/7+5)/(1/T — coNs + 1/7.)

This discretization guarantees that ns,.1 > 0 and Ny > 0. By induction we
get ng > 0 and N, > 0 for every s € N.

Figure 13 depicts a numerical result.

The peak of the photon density after switching on the laser resonator
leads to the construction of pulsed lasers.
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Output power over time [W]

Output power of n(t). N (t) population inversion

Peak value of Population Inversion over time [relative to doping density]
Output power over time [W] . 5.94e-03
1.06e+02 -
<
.g 4.75e-03
8.44e+01 £
3
g- 3.57e-03
6.33e+01 o
s
o 2.38e-03
4.22e+01 3
©
2 1.19e-03
2.11e+01 8
& 1.64e-06
0.00e+00 2.00e-08  4.00e-05  8.00e-05 1.20e-04  1.60e-04  2.00e-04
2.00e-08 4.00e-05 8.00e-05 1.20e-04 1.60e-04 2.00e- Time[s]
Timel
£

Figure 13: Numerical result

7 Mode-Analysis

7.1 Gauss Mode Analysis
7.1.1 The Lowest Order Gauss-Mode

The paraxial approximation leads to:

v R o
ox?  0y? 0z

To solve the paraxial approximation, let us make the ansatz
22 4 y2>
2q(z) )~

U(z,y,z) = A(z) exp (—z’k:

where A(z) and ¢(z) are unknown functions.
This leads to:

%_‘i’ — A(z)exp (zk%) (‘ikzjé))
T = AG)exp <—ikx2q?;§ ) (‘quQx(z))

+A(2) exp <—’k%) (ﬂkﬁ)
g_‘f = A(2)exp (_ka;q?;f)



x2+y2

+A(z) exp (—ik ) (—ik(2® + y2))(—1)%q’.

2q(=) 2q
Thus, we get
v 9%V ov
0 = —— — — + 2ik—
ox?  0y? i 0z
72 +y2>
= A(z)exp <—z’k
) 2q(2)
1 1 1 A
. k2— 2 A k2— /(.2 2 2ik= 2k
( q2(:z; +y°) ng(a: +y)+@q+zA)
K o, (1 A
0 = ?(x +y)(1—¢') + 2ik (5—1—2) :
This equation leads to the ODE’s
dq 0A 1
— =1 d —=-4.--.
0z an 0z q

The unique solutions of these equations are
e ¢(2) = qo + 2, where ¢y and zy are constants.
[} A(Z) = Aoq(é—g).

Thus, lowest order Gauss mode is

E(z,y,2) = e *W(a,y,2)

2., ,2
= A o exp (m <—z — u))
qo + 2 2(qo + 2)
Let us normalize the amplitude of this mode by goAy = 1. Then,
1 2 2
exp (—ik: (z + u))
Qo+ 2 2(qo + 2)

Now, let us study the spot size, bream waist and the energy of the lowest
order Gauss mode.

E(x,y,z) =

Definition 3. The spot size is defined by the radius r such that
o1 |E(z 1)

|E(2,0)]
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Write
1 1 1 A

w+z qk) RE rw)

where R(z) and w(z) are real valued functions. This means

I . B 1 _ Im(qo)
otz (Re(qo) + )Im(q0)2 + Re(q) + 22 Im(qo)? + (Re(qo) + 2)2
and
1 1
R(z) = (RC(QO) + Z) Im(QO)2 I (Re((]o) 4 2)2
_ Im(q)® + (Re(qo) + 2)?
hz) = Re(qo) + =z
= (Re(qo) + Z) (1 + (Relznqs%) (26)
w(ey AT+ (Relw) + 2’
o Im(qo)
=2 () + Bela) + 2
= (I (®0) + () ) 27
(28)
w(z)
Z
—Re(qo)
Figure 14: Beam waist of a Gaussian beam.
Phase shift: exp (—z’k‘ <Z + 2225)2))

By this analysis of the Gaussian beam, we get:
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e Phase shift: The phase shift of the beam ) behaves like

exp (—z’k (z

e Spot size: The spot size is w(z).

LY, %

))

e Figure 14 shows the beam waist w(z).

Now, let us analyze the energy of the beam at every slice z =constant.

To this end, observe that

7| Im(q
oo+ +f = T8 )
|exp(~b(a? + ) Pd(ay) = / / exp(—2br2)r didr
RQ
= 27?_—4[) exp(—2br? ) .
-
2
A 2 2 4,2 2
/ |E|?d(zy) = odo / exp (—zk Tty ))
R2 Qo+ 2| Jre 2(q0 + 2)
Aogo 2/ ( x2+y2)) ’
= exp
qo +z R2 U}(Z)
Aoqo ‘ror
= |2 ()
Qo+ 2| 2 Ak
Al T oz
>\|1H71r(qo)\ |w(z)] 2 Mk
B |Agqo]? m 72
~ |Im(qo)| 2 A2k
This shows that the energy
‘AOQO|2 s

JRERETE

is independent of z.

[Ln(go)| 2 A2k
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™

two mirror resonator

three mirror resonator

theoretical one way resonator

Figure 15: Types of resonators.

7.1.2 Gauss Mode in an Aperture

There exists several types of resonators (see Figure 16). Here, let us study
a one way resonator. Other resonators can be transformed to a one way

resonator.

This means that a beam travels from left to right and that the beam at

the right points z = L travels directly to the first point z = 0.
Let Q = Q5 x [0, L] be a res-
onator geometry.

Let us assume that there are
n apertures in the res-
onator.

The start points of these
apertures are

[ free spade free spade free spade free spade

20 21 z3 z5 27
22 24 26
0= 20 < 21 < 20 < <z =1L start lense mirror lense mirror
=205 21 S %S .02, —= L.

Let us shift the origin of the Gauss-modes in the resonator to these points
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such that

Ei(z,y,2) = Alm eXp (_ik ((Z —a) 2(Qixj (J;yj Zi))))

where A; := A;q;.
Then, F;(x,y, z) is the approximation of the electrical field in the subdo-
main

Qo % Jzic, & iz # 2

Qo x [zic, ) iz =2

The change of the Gauss-mode is described by ABCD matrices
At B
u-(43)
Then, the beam parameter ¢; changes as follows

- Algi_1 + B .

i — . - = MZ i—1]-
%= G 1 D [gi—1]

Lemma 2.

Mi+1[Mi[Qi—1]] = (Mi+1Mi)[Qi—l]

This lemma can be proved by a direct calculation.
Another way to prove this lemma is to use that ABCD matrices describe
the behavior of rays. To this end, one has to apply the mapping

Then, the above lemma follows by the formula of matrix multiplication.

47



7.1.3 Ray Optics and ABCD Matrix

Originally, ABCD matrices were used to describe the behavior of rays in
optical apertures.
An optical ray can be described by

e the radius r(z) and
e the slope 77(2).

The change of an optical ray is described by

Tout o A B Tin
r:)ut B O D Tiln

Example 6 (Ray-matrix of free space).

Tout _ 1 nLO Tin
T;ut 0 1 T;n
Here, observe that the refraction index is ng = £, where v is the velocity

of the optical wave in the medium and c is the velocity in vacuum.

- Tout

Tin /

Figure 16: Ray in free space.
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7.1.4 ABCD Matrix of free space

By
Ei(‘xayaz) - Ei—l(xvyu Z))
we obtain
1 , %+ y?
AT e P (‘“ﬁ ((” A S o z»)))
1 , 2% + 92
- A ik (2= 2
PR eXp( Z ((Z i 1)+2<qi_1+<z—zi_1>>))
I

¢+ (z2—2)=q-1+ (2 — zi-1)
and A; exp(—ik(z — z;)) = Ai_1exp(—ik(z — z;_1))
NS
¢ =qi—1+ (2 — 2-1)
and A; = A;_1exp(tk(—(z; — 2zi-1)))
This shows
Formula 3 (ABCD matrix of free space).

A B . 1 Zi — Zi—1
C D) \0 1

Ai = A1 exp(ik(—(zi — 2i-1)))

and
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ni, )\1 ny, )\1

———————————————————————————————

Figure 17: Phase shift of a lense.

7.1.5 ABCD Matrix of a lense

In ray optics the ABCD matrix of a lense of calculated by Snellius law:
n; sin ©; = n; sin Oy,

where the angles ©; and O, are defined by the following figure:

<

©;

©,
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Let us shift the lense such that z;_1 = z; = 0. The lense leads to a phase
shift

exp(—i2mp(r))
where r = /22 4 y? such that
Ez'(l‘7 Y, 2) = Ei—l(x7 Y, Z)) exp(—zZmp( V z? + yQ)) (29>
Let us first calculate this phase shift. By Figure 17, we see that
B0t = R
si+r* = R}

Observe the Ry + Ry — d is the distance of the to focus points of the lense.
Let us compose the beam by several rays. Then, the length of the way of
the ray through the media n; is:

(Ri+ Ry —d)—s1 + (Ri+ Ry —d) — 59
= 2(R1+R2—d)—51—52

and the length of the way of the ray through the media ns is:

R1+R2—d — (2(R1+R2—d)—81—82>
= —(R1+R2—d)+31+82.

To calculate, the phase shift we have to divide by the wavelength A\; and
A2, Tespectively:

2(R1+R2—d)—81—82+—(R1+R2—d)+81+82

where () is a constant term independent of r. Thus, the principal part of the
phase shift is contained in

1 /A
(81 + 82)/\—1 (/\—; — 1)
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1 1 1 1

= Ri+Ry—-r* | —+— ) —

( P gy (Rl+RQ>) N

This shows that the principal part of the phase shift is

1721

p(r) = —57)\—1,

where

=
Il
/7~
& X
|
—
S~
A~
=~
_l’_
F| =
S~

A ( k( I >|
i exp | —ik |24+ — _
q + =z P 2(qi ) =0

1
= Aif1 exp <—i
gi-1+ %2

_l’_
k
omi (101
exp g 27 N
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qi—1

G =———
—$¢i-1+1

1

1
and A=A 1————
1— Fdi-1

This shows

Formula 4 (ABCD matrix of a lense).

A B 1 0 1
= and A;=A;_1———
(C D) (_% 1) 11—%%—1

Observe that this formula preserves energy, since

Al A4 '
[Tm(g:)|  [Tm(gi1)]

(Show this by a calculation as a homework.)

B

Figure 18: Phase shift of a mirror.
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7.1.6 ABCD Matrix of a Mirror

Let us shift the mirror such that z;_; = z; = 0. The mirror leads to a phase
shift

exp(—ik(2s(r)))
where r = /2% + y? such that
Ei—l(xa Y, 2) = Ez(xa Y, Z) eXp(%Zk(ZS(’I“))/)\) (30)

Here we assume that the wave propagates before and after the mirror in the
+2z direction.
Let us first calculate this phase shift. By Figure 18, we see that

s(r) = R—VRE =2 1or (32 - 112) _ir

2R 2R
Thus, we get
2 2 2
—tk———=—tk | =+ 7——
2(gi-1 +2) (R 2(qi +Z>>

This implies

o —t0

Z —qi-13 +1

Formula 5 (ABCD Matrix of a mirror).

(e p)-(57)

7.1.7 Other ABCD Matrices

The last two sections showed how to calculate the ABCD matrix of a lense
and of free space. Similar calculations lead to the ABCD matrices of other
apertures (see [2]). Here, additionally, let us mention the ABCD matrix of a
“Gausian Duct”:

Formula 6 (ABCD Matrix of a Duct).

Let k = wy/pen(z), where n(x) = ng — 3nea®. Then

(&)= (—omintry "™ ).
where 7% = /o,
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7.1.8 Ray (or Beam) Matrix of the Resonator

The last sections showed how to calculate the ABCD matrix of a lense, mirror
and free space.

Using the ABCD matrix M; of each aperture on can calculate the ABCD
matrix of the whole resonator by (see Lemma 2)

vt (2 5)

i=1

Lemma 3.

A B
det(c D):det(M)zl

Proof. Observe that for every aperture the corresponding ABCD matrix M;
satisfies det(M;) = 1. O

Let rg be a start vector. Consider
re = M°rg
The eigenvalues of M are
Aap = mfm, where m = “‘*TD.

Observe that A\, = 1.
Let qq4, g» be the eigenvectors of M. Decompose

7o = CaGa + CbQp-

Such a decomposition is possible, if g, # q,. This is the case of m # 1.
Then,
Ts = Ca/\(sLQa + Cb)‘zq#

e Stable Laser: —1 < |m| < 1. Then,
re = eiG)nCaqa 4 efi@ncbqb7
tie

where N\, == cos© T isin® = e-"°,
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———————————————————————————————————————————————————————————————————————————————

Figure 19: Example of a two mirror resonator.

e Unstable Laser: |m| > 1. Then,
s = M°Caga + M cogp,

WhereM:/\a,%:/\b,M:m—i—\/m?—l.

Example 7 (Two Mirrors). Let us assume ng = 0. Consider the resonator in

Figure 19 with two mirrors and free space. The corresponding ABCD matriz
for Ry = Ry = R 1s:

= (GO - yiay)

Let us abbreviate m = 22 and o = 2. Then
2 R )

1
m=1-2a+ ~a’
2
Thus the resonator is stable (|M| < 1) if and only if 0 < a < 4. This means

2R > L.
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Figure 20: Gaussian duct.

7.1.9 Exact Solution in a Gaussian “Duct”

The refraction index of a Gaussian duct is (see Figure 20):
Lo s
k= ko(l — 57127’ )

The paraxial approximation and neglecting the small high order term }ln%rQ
leads to
ov

Aquj — 27,]{30& — k‘gngrz\ll =0

An exact solution of this equation is:

x? + 92 Az
v IR =€ - + )
) <o (- i)

where w} = 21«0\1/@ and A = 7. Observe that

Az

Twy \/n_2
7.1.10 The Guoy Phase Shift

Let us define the Guoy phase shift ¢ (z) by:

) exp(it)(z)).
This implies )
tan(z) = 7;;[;,(;2\
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Thus, ¥(2z) = 0 at the waist of the Gaussian beam.

Then, one can show

LQO_

exp(i(¥(2) — o))

wo q(z)
where 1y = 1(0) and gy = ¢(0).

7.1.11 High Order Modes

Let us the notation in [4]:

w(2)

Y

In this book the spot size at the waist z = 0 is:

A
™

2
0=

g

and
R(z) = (Re(qo) + 2) <1 +

Hermite-Gaussian Modes

(1) +

Az

(1 . <rwg>2>

(Re(qo) + 2)°
#) ’Re(qo)=0

A
;Im((Jo)

Tm(go)?

W)2

By this notation, we get the Hermite-Gaussian Modes:

b = (3 5, (122
w w w
. (1 ik
exp (—z(kz —®)—r (ﬁ + ﬁ))
where
®(m,n,z) = (m+n+1)tan"! (ﬁ)
Y Y ng
Hy(z) =1, Hy(z) ==,



The set of these functions forms a basis.
Laguerre-Gaussian Modes
The absolute value of the Laguerre-Gaussian Mode ¥, ,, is:

l 2 2
Unl = Eo (ﬂJ—D) L (2wr—z> e“b cos(l)

D

where 7, ¢ are the angle coordinates and
Li(x)=1 Lz)=1+1-x

1 1
Ly(z) = 5([ + 1)1 +2) = (I +2)x + =2?

2
dn
L,(z) =e"—

= xe” " n=20,1,..
dxn( )
The set of these functions forms a basis.

7.1.12 Thermal Lensing

The refraction index n.(x) of a laser crystal changes by
a) thermal lensing .
b) internal change of the refraction index caused by deformation
c¢) deformation of the end faces of the laser crystal
a) The refraction index of a laser crystal changes by temperature
e Let Tj be the temperature before heating (refraction index ny).

e Let T be the temperature caused by the pumping process (refraction
index n).

Let nr be the thermal index gradient.
(Example: np =2.2-1075. °C~! for Ortt).
Then,
n(x,y,z) =no +nr(T(x,y,z) — Tp)
The heating of the laser crystal leads to a deformation of the laser crystal.
This deformation can be described in the following way.
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Let B C R? be the original domain of the laser crystal.
Let T : B — R3 be the mapping of the laser deformation such that

{T(z)+z|zeB}
is the deformed domain of the laser crystal.
e Heat and
e deformation
of the crystal lead to a refraction index
ne(x), reB

such that k.(z) = w/uen.(z).
Assume that B = Dx]0, L[, L length of the laser crystal.

b) The parabolic fit of the refraction index is

e Subdivide |0, L[ in N intervals of meshsize h = &.

=

e Let Dy, be the discretization grid.

e Lor every i =0, ..., N — 1: Find ng;, ng; such that:

1 1
ne(z,y, h(i + 5)) — (1o — 5712,1‘(132 + 7))

12(Dp)

e Fach of the parameters ng;, ng; lead to a matrix

A — COS Y; 2 novi_l sin ;2
' NgY; Sin ;2 COS ;2

c¢) Additionally, perform a parabolic fit of T'(x,y,0) and T'(x,y, L).

7.2 Iteration Method of Fox and Li

The iteration method of Fox and Li applies the beam propagation method.
Consider a resonator with a left and right mirror. Let ¥ital he an initial
condition at the left mirror. By the BPMethod calculate
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e the beam configuration at the right mirror and the
e reflected beam configuration Werd := B(Writial) at the left mirror.

If Winitial — gend thep Winitial g apn eigenvector W of the BPM operator B.
The iteration method of Fox and Li is a power iteration method for the
eigenvalue problem of the BPM operator B.
This means:

\Ifl — \Ijlnltlal’ \I,erl — B(qllnltlal,s)
peigen iy U
$—00

The advantages of the BPM and Fox and Li method are:
e 3D approximation
e more general
e simple method
The disadvantages of the BPM and Fox and Li method are:

e no or bad convergence due to several eigenvectors with eigenvalues close
to each other.

bad convergence due to round off errors

e low accuracy

large computational time

model errors by the paraxial approximation

8 Finite Element Discretization of Optical Waves
in Semiconductor Laser Resonators

8.1 Construction of Semiconductor Lasers

Semiconductors have different physical properties than solid materials. One
of them is that the energy bands in semiconductors are not discrete but a
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band. To select certain frequencies, most diode lasers use gratings or dis-
tributed Bragg reflectors (DBR). A VCSEL (Vertical Cavity Surface Emit-
ting Laser) is depicted in Figure 21 and a DFB laser (Distributed Feedback
Laser) in Figure 22.

.."‘
Infineon

nnnnnnnnnnn

light output

oxide aperture p-contact

o top DBR
passivation

active layer

bottom DBR

current flow

n-contact —+— substrate

W FO OP

2001 Page

Figure 21: VCSEL (Vertical Cavity Surface Emitting Laser)

8.2 Transfer Matrix Method

To obtain a gain of light for a certain frequency several different construc-

tions are used. The main concept is to use layers of materials with different

refraction indices. These layers of different materials form the resonators.
Let us assume that the resonator has the form

Q=Ux|0,L]

and that 0 = [y < [; < ... < l; = L Furthermore, let us assume that the
resonator has the refraction index n; (k;) in the layer ¥ x [l;_1,[;]. Since
the layers are very thin, it is important to take into account reflection at the
interfaces of the different materials. To understand this in more detail let us
consider the 1D case. Assume that

—FE"—k’E =0.
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contact

~w- /

A
4

active layer

substrate

Figure 22: VCSEL (Distributed Feedback Laser)

Let us assume the k is constant in the interior of [l;_1,l;]. Then,

E(Z) = Cjr exp(—zkz(z — li—l)) + Cil exp(iki(z — li—l)) for z € [li—l, lz]

By the regularity of differential equations, we obtain F € C1([0, L]). This
leads to the following equations at the interfaces (see Figure 23):
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Cirexp(—ik;(l; — lic1)) + cipexp(iki(l; — Liz1)) = Cip1p + Citay
—Cir exp(—iki(li — lz—l))kz —+ Cil exp(zk;z(lz — ll_l))]ﬁ = (_Ci+1,rki+1 + C7;+1’lkil‘+1).

Let us abbreviate h; = I; — [;_1. Then, we get

1 1 eXp(—Zl{?th> 0 Cir
—kil kz 0 eXp(Zk’th) Ci,l
= (el ) (20

—kiv1 ki Cit1,l

I
Citir | _ M. Cir
Cit1 ’ Cil
1 1\
Mi -
<—ki+1 ki+1)

1 1 exp(—ik;h;) 0
—k; K 0 exp(ik;h;)
M, = < kivi + ki iy — K ) 1 ( exp(—tk;h;) U ) .

kivpn — ki ki1 + K 2k; i1 0 exp(ik;h;)
Ci,r Cit1,r
n; N1
Cil Cit+1,l
hi

Figure 23: Transmission of two waves from one layer to another layer

In general one can describe the behavior by a scattering matrix S and a

transmission matrix 7"
C2,r o S Cl,r
C1, Co

Cl,r — T C2,r
C1,1 C21
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Cir Cor

— —
black box
C1, Cal
- -

Figure 24: Black box

Example 8. Let us study 101 layers with refraction index ng,ny,ng, ..., Ng,
Mo =1.6-1075, ky = ?\—g, and w = ﬁ, where \/eofio = + and ng = 3.277.
Let us choose ca; = 1, c1, = 0. Then, ci; shows the behavior of the con-

struction. Figure 25 and Figure 26 depict ci; with respect to w.

A high reflectivity is obtained for w = wy, 3w, dwp, ...

zzzzzz

11111

111111111111111111111111111111

Figure 25: Reflection behavior Figure 26: Reflection behavior
for ny = 3.275. for n, = 3.220.
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